eelbrain.load.mne.variable_length_mne_epochs
- eelbrain.load.mne.variable_length_mne_epochs(events, tmin, tmax=None, baseline=None, allow_truncation=False, tstop=None, picks=None, decim=1, **kwargs)
Load mne Epochs where each epoch has a different length
- Parameters:
events (Dataset) – Dataset containing events and an
mne.io.Raw
data object, as returned byeelbrain.load.mne.events()
.tmin (float | Sequence[float] | str) – First sample to include in each epoch in seconds, relative to event time. Can be
str
referencing a variable inevents
.tmax (float | Sequence[float] | str) – Last sample to include in each epoch in seconds, relative to event time. Can be
str
referencing a variable inevents
.baseline (Tuple[float | None, float | None] | None) – Time interval for baseline correction.
(tmin, tmax)
tuple in seconds, orNone
to use all the data (e.g.,(None, 0)
uses all the data from the beginning of the epoch up tot = 0
). Set toNone
for no baseline correction (default).allow_truncation (bool) – If a
tmin
ortmax
value falls outside the data available inraw
, automatically truncate the epoch (by default this raises aValueError
).tstop (float | Sequence[float]) – Alternative to
tmax
. Whiletmax
specifies the last samples to include,tstop
specifies the sample before which to stop (standard Python indexing convention). For example, at 100 Hz the epoch withtmin=-0.1, tmax=0.4
will have 51 samples, while the epoch specified withtmin=-0.1, tstop=0.4
will have 50 samples.... –
mne.Epochs
parameters.picks (Any)
decim (int)
- Return type: