Publications using Eelbrain

Ordered by year and alphabetically according to authors’ last name:

[1]

Christian Brodbeck, Thomas Hannagan, and James S Magnuson. Recurrent neural networks as neuro-computational models of human speech recognition. bioRxiv, pages 2024–02, 2024. doi:10.1101/2024.02.20.580731.

[2]

Christian Brodbeck, Katerina Danae Kandylaki, and Odette Scharenborg. Neural representations of non-native speech reflect proficiency and interference from native language knowledge. Journal of Neuroscience, 2024. https://www.jneurosci.org/content/44/1/e0666232023.abstract.

[3]

Dustin A Chacon, Donald Gray Dunagan, Jill McLendon, Hareem Khokhar, and Zahin Hoque. Quick, don't move!: wh-movement and wh-in-situ structures in rapid parallel reading-EEG studies in english, urdu, and mandarin chinese. bioRxiv, pages 2024–05, 2024. doi:10.1101/2024.05.06.592830.

[4]

Dustin A Chacón, Subhekshya Shrestha, Brian W Dillon, Rajesh Bhatt, Diogo Almeida, and Alec Marantz. Same sentences, different grammars, different brain responses: an MEG study on case and agreement encoding in hindi and nepali split-ergative structures. bioRxiv, pages 2024–02, 2024. doi:10.1101/2024.02.12.579942.

[5]

Cas W Coopmans, Helen de Hoop, Filiz Tezcan, Peter Hagoort, and Andrea E Martin. Neural dynamics express syntax in the time domain during natural story listening. bioRxiv, pages 2024–03, 2024. doi:10.1101/2024.03.19.585683.

[6]

Donald Dunagan, Tyson Jordan, John T Hale, Liina Pylkkänen, and Dustin A Chacón. Rapid visual form-based processing of (some) grammatical features in parallel reading: an EEG study in english. bioRxiv, pages 2024–04, 2024. doi:10.1101/2024.04.10.588861.

[7]

Changjiang Gao, Jixing Li, Jiajun Chen, and Shujian Huang. Measuring meaning composition in the human brain with composition scores from large language models. arXiv preprint arXiv:2403.04325, 2024. https://arxiv.org/abs/2403.04325.

[8]

Chandra Leon Haider, Anne Hauswald, and Nathan Weisz. Decreasing hearing ability does not lead to improved visual speech extraction as revealed in a neural speech tracking paradigm. bioRxiv, pages 2024–03, 2024. doi:10.1101/2024.03.13.584400.

[9]

IM Dushyanthi Karunathilake, Christian Brodbeck, Shohini Bhattasali, Philip Resnik, and Jonathan Z Simon. Neural dynamics of the processing of speech features: evidence for a progression of features from acoustic to sentential processing. bioRxiv, pages 2024–02, 2024. doi:10.1101/2024.02.02.578603.

[10]

Simone Krogh and Liina Pylkkanen. Manipulating syntax without taxing working memory: MEG correlates of syntactic dependencies in a verb-second language. bioRxiv, pages 2024–02, 2024. doi:10.1101/2024.02.20.581245.

[11]

Joshua P Kulasingham, Florine L Bachmann, Kasper Eskelund, Martin Enqvist, Hamish Innes-Brown, and Emina Alickovic. Predictors for estimating subcortical EEG responses to continuous speech. Plos one, 19(2):e0297826, 2024. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0297826.

[12]

Joshua P Kulasingham, Hamish Innes-Brown, Martin Enqvist, and Emina P Alickovic. Level dependent subcortical EEG responses to continuous speech. bioRxiv, pages 2024–04, 2024. doi:10.1101/2024.04.01.587607.

[13]

Jixing Li, Marco Lai, and Liina Pylkkänen. Semantic composition in experimental and naturalistic paradigms. Imaging Neuroscience, 2:1–17, 2024. https://direct.mit.edu/imag/article/doi/10.1162/imag_a_00072/118936.

[14]

Nan Lin, Xiaohan Zhang, Xiuyi Wang, and Shaonan Wang. The organization of the semantic network as reflected by the neural correlates of six semantic dimensions. Brain and Language, 250:105388, 2024. https://www.sciencedirect.com/science/article/pii/S0093934X24000117.

[15]

Suhail Matar and Alec Marantz. Neural bases of proactive and predictive processing of meaningful sub-word units in speech comprehension. bioRxiv, pages 2024–04, 2024. doi:10.1101/2024.04.29.591610.

[16]

Ramtin Mehraram, Pieter De Clercq, Jill Kries, Maaike Vandermosten, and Tom Francart. Functional connectivity of stimulus-evoked brain responses to natural speech in post-stroke aphasia. medRxiv, pages 2024–01, 2024. https://www.medrxiv.org/content/10.1101/2024.01.15.24301324.abstract.

[17]

Christopher JH Pirrung, Garima Singh, Jeremy Hogeveen, Davin Quinn, and James F Cavanagh. Hypoactivation of ventromedial frontal cortex in major depressive disorder: an MEG study of the reward positivity. bioRxiv, pages 2024–04, 2024. doi:10.1101/2024.04.18.590159.

[18]

Florine L Bachmann, Joshua P Kulasingham, Kasper Eskelund, Martin Enqvist, Emina Alickovic, and Hamish Innes-Brown. Extending subcortical EEG responses to continuous speech to the sound-field. bioRxiv, pages 2023–11, 2023. doi:10.1101/2023.11.08.566173.

[19]

Martina Berto, Patrick Reisinger, Emiliano Ricciardi, Nathan Weisz, and Davide Bottari. Hemispheric asymmetries in auditory cortex reflect discriminative responses to temporal details or summary statistics of stationary sounds. bioRxiv, pages 2023–08, 2023. doi:10.1101/2023.08.03.551829.

[20]

Christian Brodbeck, Proloy Das, Marlies Gillis, Joshua P Kulasingham, Shohini Bhattasali, Phoebe Gaston, Philip Resnik, and Jonathan Z Simon. Eelbrain, a python toolkit for time-continuous analysis with temporal response functions. Elife, 12:e85012, 2023. https://elifesciences.org/articles/85012.

[21]

Dustin Alfonso Chacón and Liina Pylkkanen. Disentangling semantic prediction and association in processing filler-gap dependencies: an MEG study in english. PsyArXiv, 2023. https://osf.io/preprints/psyarxiv/4h86e/.

[22]

Vrishab Commuri, Joshua P Kulasingham, and Jonathan Z Simon. Cortical responses time-locked to continuous speech in the high-gamma band depend on selective attention. bioRxiv, pages 2023–07, 2023. doi:10.1101/2023.07.20.549567.

[23]

Proloy Das, Mingjian He, and Patrick L Purdon. A dynamic generative model can extract interpretable oscillatory components from multichannel neurophysiological recordings. bioRxiv, pages 2023–07, 2023. doi:10.1101/2023.07.26.550594.

[24]

Pieter De Clercq, Jill Kries, Ramtin Mehraram, Jonas Vanthornhout, Tom Francart, and Maaike Vandermosten. Detecting post-stroke aphasia using EEG-based neural envelope tracking of natural speech. medRxiv, pages 2023–03, 2023. doi:10.1101/2023.03.14.23287194.

[25]

Pieter De Clercq, Jonas Vanthornhout, Maaike Vandermosten, and Tom Francart. Beyond linear neural envelope tracking: a mutual information approach. Journal of Neural Engineering, 20(2):026007, 2023. https://iopscience.iop.org/article/10.1088/1741-2552/acbe1d/meta.

[26]

Graham Flick. From Letters to Concepts: Examining the Brain Systems That Support Word Recognition and Composition in Reading. PhD thesis, New York University, 2023. https://search.proquest.com/openview/f646a07b5293992715ea963d3d2a05bd/1?pq-origsite=gscholar\&cbl=18750\&diss=y.

[27]

Phoebe Gaston, Christian Brodbeck, Colin Phillips, and Ellen Lau. Auditory word comprehension is less incremental in isolated words. Neurobiology of Language, 4(1):29–52, 2023. doi:10.1162/nol_a_00084.

[28]

Quirin Gehmacher, Juliane Schubert, Fabian Schmidt, Thomas Hartmann, Patrick Reisinger, Sebastian Roesch, Konrad Schwarz, Tzvetan Popov, Maria Chait, and Nathan Weisz. Eye movements track prioritized auditory features in selective attention to natural speech. bioRxiv, pages 2023–01, 2023. doi:10.1101/2023.01.23.525171.

[29]

Marlies Gillis, Jill Kries, Maaike Vandermosten, and Tom Francart. Neural tracking of linguistic and acoustic speech representations decreases with advancing age. NeuroImage, 267:119841, 2023. https://www.sciencedirect.com/science/article/pii/S1053811922009624.

[30]

Marlies Gillis, Jonas Vanthornhout, and Tom Francart. Heard or understood? neural tracking of language features in a comprehensible story, an incomprehensible story and a word list. eneuro, 2023. https://www.eneuro.org/content/10/7/ENEURO.0075-23.2023.abstract.

[31]

Ebony Goldman, Sherine Bou-Dargham, Marco Lai, Anvita Guda, Jacqui Fallon, Miriam Hauptman, Alejandra Reinoso, Sarah Phillips, Ellie Abrams, Alicia Parrish, and others. MEG correlates of speech planning in simple vs. interactive picture naming in children and adults. Plos one, 18(10):e0292316, 2023. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0292316.

[32]

Chandra Leon Haider, Hyojin Park, Anne Hauswald, and Nathan Weisz. Lip movements and lexical features improve speech tracking differently for clear and multi-speaker speech. bioRxiv, pages 2023–05, 2023. doi:10.1101/2023.05.15.540818.

[33]

Christian Herrera, Nicole Whittle, Marjorie R Leek, Christian Brodbeck, Grace Lee, Caleb Barcenas, Samuel Barnes, Barbara Holshouser, Alex Yi, and Jonathan H Venezia. Cortical networks for recognition of speech with simultaneous talkers. Hearing Research, 437:108856, 2023. https://www.sciencedirect.com/science/article/pii/S0378595523001685.

[34]

IM Dushyanthi Karunathilake, Joshua P Kulasingham, and Jonathan Z Simon. Neural tracking measures of speech intelligibility: manipulating intelligibility while keeping acoustics unchanged. bioRxiv, pages 2023–05, 2023. doi:10.1101/2023.05.18.541269.

[35]

Jill Kries, Pieter De Clercq, Marlies Gillis, Jonas Vanthornhout, Robin Lemmens, Tom Francart, and Maaike Vandermosten. Exploring neural tracking of acoustic and linguistic speech representations in individuals with post-stroke aphasia. bioRxiv, pages 2023–03, 2023. doi:10.1101/2023.03.01.530707.

[36]

Jacie R McHaney. Sensory and Cognitive Factors Underlying Self-Perceived Listening Difficulties in Adults with Normal Hearing Thresholds. PhD thesis, University of Pittsburgh, 2023. http://d-scholarship.pitt.edu/44538/.

[37]

Patrick Reisinger, Marlies Gillis, Nina Suess, Jonas Vanthornhout, Chandra Leon Haider, Thomas Hartmann, Anne Hauswald, Konrad Schwarz, Tom Francart, and Nathan Weisz. Neural speech tracking benefit of lip movements predicts behavioral deterioration when the speaker's mouth is occluded. bioRxiv, pages 2023–04, 2023. doi:10.1101/2023.04.17.536524.

[38]

Juliane Schubert, Quirin Gehmacher, Fabian Schmidt, Thomas Hartmann, and Nathan Weisz. Prediction tendency, eye movements, and attention in a unified framework of neural speech tracking. bioRxiv, pages 2023–06, 2023. doi:10.1101/2023.06.27.546746.

[39]

Juliane Schubert, Fabian Schmidt, Quirin Gehmacher, Annika Bresgen, and Nathan Weisz. Cortical speech tracking is related to individual prediction tendencies. Cerebral Cortex, 2023. doi:10.1093/cercor/bhac528.

[40]

Filiz Tezcan, Hugo Weissbart, and Andrea E Martin. A tradeoff between acoustic and linguistic feature encoding in spoken language comprehension. Elife, 12:e82386, 2023. https://elifesciences.org/articles/82386.

[41]

Tilde Van Hirtum, Ben Somers, Benjamin Dieudonné, Eline Verschueren, Jan Wouters, and Tom Francart. Neural envelope tracking predicts speech intelligibility and hearing aid benefit in children with hearing loss. bioRxiv, pages 2023–07, 2023. doi:10.1101/2023.07.03.547477.

[42]

Tilde Van Hirtum, Ben Somers, Eline Verschueren, Benjamin Dieudonné, and Tom Francart. Delta-band neural envelope tracking predicts speech intelligibility in noise in preschoolers. Hearing Research, pages 108785, 2023. doi:10.1016/j.heares.2023.108785.

[43]

Zhouheng Wang, Nanlin Shi, Yingchao Zhang, Ning Zheng, Haicheng Li, Yang Jiao, Jiahui Cheng, Yutong Wang, Xiaoqing Zhang, Ying Chen, and others. Conformal in-ear bioelectronics for visual and auditory brain-computer interfaces. Nature Communications, 14(1):4213, 2023. https://www.nature.com/articles/s41467-023-39814-6.

[44]

Johanna Wilroth, Joshua P Kulasingham, Martin A Skoglund, and Emina Alickovic. Direct estimation of linear filters for EEG source-localization in a competing-talker scenario. IFAC-PapersOnLine, 56(2):6510–6517, 2023. https://www.sciencedirect.com/science/article/pii/S2405896323006511.

[45]

Zilong Xie, Christian Brodbeck, and Bharath Chandrasekaran. Cortical tracking of continuous speech under bimodal divided attention. Neurobiology of Language, 4(2):318–343, 2023. https://direct.mit.edu/nol/article-abstract/4/2/318/114548.

[46]

Jin-Xiao Zhang, Maia Ten Brink, Yan Yan, Andrea Goldstein-Piekarski, Adam J Krause, Rachel Manber, and James Gross. Daytime affect and sleep EEG activity: a data-driven exploration. PsyArXiv, 2023. doi:10.31234/osf.io/aufbz.

[47]

Rebecca E Bieber, Christian Brodbeck, and Samira Anderson. Examining the context benefit in older adults: a combined behavioral-electrophysiologic word identification study. Neuropsychologia, pages 108224, 2022.

[48]

Christian Brodbeck, Shohini Bhattasali, Aura AL Cruz Heredia, Philip Resnik, Jonathan Z Simon, and Ellen Lau. Parallel processing in speech perception with local and global representations of linguistic context. Elife, 11:e72056, 2022. doi:10.7554/eLife.72056.

[49]

Proloy Das and Patrick L Purdon. Extracting common oscillatory time-courses from multichannel recordings: oscillation component analysis. In 2022 56th Asilomar Conference on Signals, Systems, and Computers, 602–606. IEEE, 2022. doi:10.1109/IEEECONF56349.2022.10052084.

[50]

Marlies Gillis, Lien Decruy, Jonas Vanthornhout, and Tom Francart. Hearing loss is associated with delayed neural responses to continuous speech. European Journal of Neuroscience, 55(6):1671–1690, 2022. https://onlinelibrary.wiley.com/doi/abs/10.1111/ejn.15644.

[51]

Marlies Gillis, Jana Van Canneyt, Tom Francart, and Jonas Vanthornhout. Neural tracking as a diagnostic tool to assess the auditory pathway. Hearing Research, pages 108607, 2022. https://www.sciencedirect.com/science/article/pii/S0378595522001757.

[52]

Joshua P Kulasingham and Jonathan Z Simon. Algorithms for estimating time-locked neural response components in cortical processing of continuous speech. bioRxiv, 2022. doi:10.1101/2022.01.18.476815.

[53]

Suhail Matar. Processing Latent Information in Language Comprehension. PhD thesis, New York University, 2022. https://search.proquest.com/openview/7246644f610d3414638e549f6fa861fa/1?pq-origsite=gscholar\&cbl=18750\&diss=y.

[54]

Suhail Matar and Alec Marantz. Models of processing complex spoken words: the naïve, the passive, and the predictive. Proceedings of the Conference on Cognitive Computational Neuroscience, 2022. https://2022.ccneuro.org/proceedings/0000331.pdf.

[55]

Alicia Parrish. The Interaction Between Conceptual Combination and Linguistic Structure. PhD thesis, New York University, 2022. https://search.proquest.com/openview/e6f65a934e536643246e975828a3f2fb/1?pq-origsite=gscholar\&cbl=18750\&diss=y.

[56]

Alicia Parrish and Liina Pylkkänen. Conceptual combination in the LATL with and without syntactic composition. Neurobiology of Language, 3(1):46–66, 2022. https://direct.mit.edu/nol/article-abstract/3/1/46/102654.

[57]

Alicia Parrish, Amilleah Rodriguez, and Liina Pylkkanen. Non-local conceptual combination. bioRxiv, 2022. doi:10.1101/2022.12.11.519989.

[58]

Sarah Frances Phillips. Composing Mixed-Language Expressions in the Bilingual Mind. PhD thesis, New York University, 2022. https://search.proquest.com/openview/0813f09c02fbef0eff9dd220bc6daa3d/1?pq-origsite=gscholar\&cbl=18750\&diss=y.

[59]

Fabian Schmidt, Sarah K Danboeck, Eugen Trinka, Gianpaolo Demarchi, and Nathan Weisz. Age-related changes in'cortical'1/f dynamics are explained by cardiac activity. bioRxiv, 2022. doi:10.1101/2022.11.07.515423.

[60]

Juliane Schubert, Fabian Schmidt, Quirin Gehmacher, Annika Bresgen, and Nathan Weisz. Individual prediction tendencies facilitate cortical speech tracking. bioRxiv, 2022. doi:10.1101/2022.04.22.489224.

[61]

Linoy Schwartz, Jonathan Levy, Yaara Endevelt-Shapira, Amir Djalovski, Olga Hayut, Guillaume Dumas, and Ruth Feldman. Technologically-assisted communication attenuates inter-brain synchrony. bioRxiv, 2022. doi:10.1101/2022.06.06.494185.

[62]

Maxime Alexandra Tulling. Neural and developmental bases of processing language outside the here-and-now. PhD thesis, New York University, 2022. https://search.proquest.com/openview/bae98a7cd0e7c6bbb436ed364ed00e8e/1.pdf?pq-origsite=gscholar\&cbl=18750\&diss=y.

[63]

Eline Verschueren. Objective measurement of speech intelligibility with cochlear implants. PhD thesis, KU Leuven, 2022. https://lirias.kuleuven.be/handle/20.500.12942/704537.

[64]

Eline Verschueren, Marlies Gillis, Lien Decruy, Jonas Vanthornhout, and Tom Francart. Speech understanding oppositely affects acoustic and linguistic neural tracking in a speech rate manipulation paradigm. bioRxiv, 2022. doi:10.1101/2022.02.04.479105.

[65]

Samantha Wray, Linnaea Stockall, and Alec Marantz. Early form-based morphological decomposition in tagalog: MEG evidence from reduplication, infixation, and circumfixation. Neurobiology of Language, 3(2):235–255, 2022. https://direct.mit.edu/nol/article-abstract/3/2/235/108565.

[66]

Arianna Zuanazzi, Pablo Ripolles, Wy Ming Lin, Laura Gwilliams, Jean-Remi King, and David Poeppel. Tracking the online construction of linguistic meaning through negation. bioRxiv, 2022. doi:10.1101/2022.10.14.512299.

[67]

Christian Brodbeck and Jonathan Z Simon. Cortical tracking of voice pitch in the presence of multiple speakers depends on selective attention. bioRxiv, 2021. doi:10.1101/2021.12.03.471122.

[68]

Yaara Endevelt-Shapira, Amir Djalovski, Guillaume Dumas, and Ruth Feldman. Maternal chemosignals enhance infant-adult brain-to-brain synchrony. Science Advances, 7(50):eabg6867, 2021. https://www.science.org/doi/abs/10.1126/sciadv.abg6867.

[69]

Graham Flick, Osama Abdullah, and Liina Pylkkänen. From letters to composed concepts: a magnetoencephalography study of reading. Human brain mapping, 42(15):5130–5153, 2021. https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.25608.

[70]

Phoebe Gaston, Linnaea Stockall, Sarah VanWagenen, and Alec Marantz. Memory for affixes in a long-lag priming paradigm. Glossa: a journal of general linguistics, 2021. https://www.glossa-journal.org/article/id/5735/.

[71]

Marlies Gillis, Jonas Vanthornhout, Jonathan Z Simon, Tom Francart, and Christian Brodbeck. Neural markers of speech comprehension: measuring EEG tracking of linguistic speech representations, controlling the speech acoustics. bioRxiv, 2021. https://www.biorxiv.org/content/10.1101/2021.03.24.436758v1.abstract.

[72]

Songhee Kim and Liina Pylkkänen. How the conceptual specificity of individual words affects incremental sentence composition: MEG evidence. Brain and Language, 218:104951, 2021. https://www.sciencedirect.com/science/article/pii/S0093934X21000456.

[73]

Joshua P Kulasingham, Neha H Joshi, Mohsen Rezaeizadeh, and Jonathan Z Simon. Cortical processing of arithmetic and simple sentences in an auditory attention task. bioRxiv, 2021. https://www.biorxiv.org/content/10.1101/2021.01.31.429030v3.abstract.

[74]

Joshua Pranjeevan Kulasingham. Time-Locked Cortical Processing of Speech in Complex Environments. PhD thesis, University of Maryland, College Park, 2021. https://drum.lib.umd.edu/handle/1903/28410.

[75]

Ryan Law and Liina Pylkkänen. Lists with and without syntax: a new approach to measuring the neural processing of syntax. Journal of Neuroscience, 41(10):2186–2196, 2021. https://www.jneurosci.org/content/41/10/2186.abstract.

[76]

Jixing Li and Liina Pylkkänen. Disentangling semantic composition and semantic association in the left temporal lobe. Journal of Neuroscience, 2021. https://www.jneurosci.org/content/early/2021/06/15/JNEUROSCI.2317-20.2021.abstract.

[77]

Jixing Li, Shaonan Wang, Wen-Ming Luh, Liina Pylkkänen, Yiming Yang, and John Hale. Cortical processing of reference in language revealed by computational models. bioRxiv, pages 2020–11, 2021. doi:10.1101/2020.11.24.396598.

[78]

Sarah F Phillips and Liina Pylkkänen. Composition within and between languages in the bilingual mind: MEG evidence from korean/english bilinguals. Eneuro, 2021. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc8570682/.

[79]

Yuta Takahashi, Yohei Oseki, Hiromu Sakai, Michiru Makuuchi, and Rieko Osu. Identifying brain regions related to word prediction during listening to japanese speech by combining a lstm language model and MEG. bioRxiv, 2021. https://www.biorxiv.org/content/10.1101/2021.03.25.436887v1.abstract.

[80]

Maxime Tulling, Ryan Law, Ailís Cournane, and Liina Pylkkänen. Neural correlates of modal displacement and discourse-updating under (un) certainty. Eneuro, 2021. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7810261/.

[81]

Eline Verschueren, Jonas Vanthornhout, and Tom Francart. The effect of stimulus intensity on neural envelope tracking. Hearing Research, 403:108175, 2021. https://www.sciencedirect.com/science/article/pii/S0378595521000095.

[82]

Md Hasan Anowar. A Python-based Brain-Computer Interface Package for Neural Data Analysis. PhD thesis, The University of Texas Rio Grande Valley, 2020. https://search.proquest.com/openview/671784502734dbd4074d0b4f97d26a97/1?pq-origsite=gscholar\&cbl=18750\&diss=y.

[83]

Esti Blanco-Elorrieta. Towards an ecologically valid neurobiology of bilingualism. PhD thesis, New York University, 2020. https://search.proquest.com/openview/f79d3946e65b72be4d17924229661815/1?pq-origsite=gscholar\&cbl=18750\&diss=y.

[84]

Christian Brodbeck, Alex Jiao, L Elliot Hong, and Jonathan Z Simon. Neural speech restoration at the cocktail party: auditory cortex recovers masked speech of both attended and ignored speakers. PLoS biology, 18(10):e3000883, 2020. https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000883.

[85]

Proloy Das, Christian Brodbeck, Jonathan Z Simon, and Behtash Babadi. Neuro-current response functions: a unified approach to MEG source analysis under the continuous stimuli paradigm. Neuroimage, 211:116528, 2020. https://www.sciencedirect.com/science/article/pii/S105381192030015X.

[86]

Julien Dirani and Liina Pylkkänen. Lexical access in naming and reading: spatiotemporal localization of semantic facilitation and interference using MEG. Neurobiology of Language, 1(2):185–207, 2020. https://direct.mit.edu/nol/article-abstract/1/2/185/95871.

[87]

Graham Flick and Liina Pylkkänen. Isolating syntax in natural language: MEG evidence for an early contribution of left posterior temporal cortex. Cortex, 127:42–57, 2020. https://www.sciencedirect.com/science/article/pii/S0010945220300502.

[88]

Joshua P Kulasingham, Christian Brodbeck, Alessandro Presacco, Stefanie E Kuchinsky, Samira Anderson, and Jonathan Z Simon. High gamma cortical processing of continuous speech in younger and older listeners. Neuroimage, 222:117291, 2020. https://www.sciencedirect.com/science/article/pii/S1053811920307771.

[89]

Jixing Li, Wen-Ming Luh, Liina Pylkkänen, Yiming Yang, and John Hale. Modeling pronoun resolution in the brain. bioRxiv, 2020. https://www.biorxiv.org/content/10.1101/2020.11.24.396598v1.abstract.

[90]

Elisabeth B Marsh, Christian Brodbeck, Rafael H Llinas, Dania Mallick, Joshua P Kulasingham, Jonathan Z Simon, and Rodolfo R Llinás. Poststroke acute dysexecutive syndrome, a disorder resulting from minor stroke due to disruption of network dynamics. Proceedings of the National Academy of Sciences, 117(52):33578–33585, 2020. https://www.pnas.org/content/117/52/33578.short.

[91]

Eline Verschueren, Jonas Vanthornhout, and Tom Francart. The effect of stimulus choice on an EEG-based objective measure of speech intelligibility. Ear and hearing, 41(6):1586–1597, 2020. https://journals.lww.com/ear-hearing/fulltext/2020/11000/the_effect_of_stimulus_choice_on_an_eeg_based.16.aspx.

[92]

Thomas Hartmann and Nathan Weisz. Auditory cortical generators of the frequency following response are modulated by intermodal attention. NeuroImage, 203:116185, 2019. doi:10.1016/j.neuroimage.2019.116185.

[93]

Suhail Matar, Liina Pylkkänen, and Alec Marantz. Left occipital and right frontal involvement in syntactic category prediction: MEG evidence from standard arabic. Neuropsychologia, 135:107230, 2019. https://www.sciencedirect.com/science/article/pii/S002839321930274X.

[94]

William Matchin, Christian Brodbeck, Christopher Hammerly, and Ellen Lau. The temporal dynamics of structure and content in sentence comprehension: evidence from fMRI-constrained MEG. Human brain mapping, 40(2):663–678, 2019. https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.24403.

[95]

Madeline Pifer. An Investigation of Neural Mechanisms Underlying Verb Morphology Deficits in Aphasia. PhD thesis, University of Maryland, College Park, 2019. https://search.proquest.com/openview/1f2ef0a91eef05c8bab98ad8d5551e7f/1?pq-origsite=gscholar\&cbl=18750\&diss=y.

[96]

Victoria Sharpe, Samir Reddigari, Liina Pylkkänen, and Alec Marantz. Automatic access to verb continuations on the lexical and categorical levels: evidence from MEG. Language, Cognition and Neuroscience, 34(2):137–150, 2019. https://www.tandfonline.com/doi/abs/10.1080/23273798.2018.1531139.

[97]

Linnaea Stockall, Christina Manouilidou, Laura Gwilliams, Kyriaki Neophytou, and Alec Marantz. Prefix stripping re-re-revisited: MEG investigations of morphological decomposition and recomposition. Frontiers in psychology, pages 1964, 2019. https://www.frontiersin.org/articles/10.3389/fpsyg.2019.01964/full.

[98]

Christian Brodbeck, L Elliot Hong, and Jonathan Z Simon. Rapid transformation from auditory to linguistic representations of continuous speech. Current Biology, 28(24):3976–3983, 2018. doi:10.1016/j.cub.2018.10.042.

[99]

Christian Brodbeck, Alessandro Presacco, Samira Anderson, and Jonathan Z Simon. Over-representation of speech in older adults originates from early response in higher order auditory cortex. Acta Acustica united with Acustica, 104(5):774–777, 2018. https://www.ingentaconnect.com/content/dav/aaua/2018/00000104/00000005/art00013.

[100]

Christian Brodbeck, Alessandro Presacco, and Jonathan Z Simon. Neural source dynamics of brain responses to continuous stimuli: speech processing from acoustics to comprehension. NeuroImage, 172:162–174, 2018. https://www.sciencedirect.com/science/article/pii/S1053811918300429.

[101]

Julien Dirani and Liina Pylkkänen. Lexical access in comprehension vs. production: spatiotemporal localization of semantic facilitation and interference. bioRxiv, pages 449157, 2018. doi:10.1101/449157v2.

[102]

Graham Flick, Yohei Oseki, Amanda R Kaczmarek, Meera Al Kaabi, Alec Marantz, and Liina Pylkkänen. Building words and phrases in the left temporal lobe. Cortex, 2018. https://www.sciencedirect.com/science/article/pii/S0010945218301904.

[103]

Phoebe Gaston and Alec Marantz. The time course of contextual cohort effects in auditory processing of category-ambiguous words: MEG evidence for a single “clash” as noun or verb. Language, Cognition and Neuroscience, 33(4):402–423, 2018. https://www.tandfonline.com/doi/abs/10.1080/23273798.2017.1395466.

[104]

Laura Gwilliams and Alec Marantz. Morphological representations are extrapolated from morpho-syntactic rules. Neuropsychologia, 114:77–87, 2018. https://www.sciencedirect.com/science/article/pii/S0028393218301568.

[105]

Kyriaki Neophytou, Christina Manouilidou, Linnaea Stockall, and Alec Marantz. Syntactic and semantic restrictions on morphological recomposition: MEG evidence from greek. Brain and language, 183:11–20, 2018. https://www.sciencedirect.com/science/article/pii/S0093934X1730130X.

[106]

Eline Verschueren, Jonas Vanthornhout, and Tom Francart. Semantic context enhances neural envelope tracking. bioRxiv, pages 421727, 2018. https://www.biorxiv.org/content/early/2018/09/19/421727.abstract.

[107]

Adina Williams. Representing relationality: MEG studies on argument structure. PhD thesis, New York University, 2018. https://search.proquest.com/openview/3eac63204ea3455c96e64a21bd0d5d94/1?pq-origsite=gscholar\&cbl=18750.

[108]

Linmin Zhang and Liina Pylkkänen. Composing lexical versus functional adjectives: evidence for uniformity in the left temporal lobe. Psychonomic bulletin & review, 25(6):2309–2322, 2018. https://link.springer.com/article/10.3758/s13423-018-1469-y.

[109]

Linmin Zhang and Liina Pylkkänen. Semantic composition of sentences word by word: MEG evidence for shared processing of conceptual and logical elements. Neuropsychologia, 119:392–404, 2018. doi:10.1016/j.neuropsychologia.2018.08.016.

[110]

Esti Blanco-Elorrieta and Liina Pylkkänen. Bilingual language switching in the lab vs. in the wild: the spatio-temporal dynamics of adaptive language control. Journal of Neuroscience, pages 0553–17, 2017. http://www.jneurosci.org/content/early/2017/08/16/JNEUROSCI.0553-17.2017.abstract.

[111]

Christian Brodbeck and Liina Pylkkänen. Language in context: characterizing the comprehension of referential expressions with MEG. NeuroImage, 147:447–460, 2017. https://www.sciencedirect.com/science/article/pii/S1053811916307169.

[112]

Krishna C Puvvada, Marisel Villafane-Delgado, Christian Brodbeck, and Jonathan Z Simon. Neural coding of noisy and reverberant speech in human auditory cortex. bioRxiv, pages 229153, 2017. https://www.biorxiv.org/content/early/2017/12/04/229153.abstract.

[113]

Venkata Naga Krishna Chaitanya Puvvada. Cortical Representation of Speech in Complex Auditory Environments and Applications. PhD thesis, University of Maryland, College Park, 2017. https://search.proquest.com/openview/2f4e278fe66fd86b3f2f83c9af9cc8d5/1?pq-origsite=gscholar\&cbl=18750.

[114]

Adina Williams, Samir Reddigari, and Liina Pylkkänen. Early sensitivity of left perisylvian cortex to relationality in nouns and verbs. Neuropsychologia, 100:131–143, 2017. https://www.sciencedirect.com/science/article/pii/S0028393217301586.

[115]

Christian Brodbeck, Laura Gwilliams, and Liina Pylkkänen. Language in context: MEG evidence for modality general and specific responses to reference resolution. eNeuro, pages ENEURO–0145, 2016. http://www.eneuro.org/content/early/2016/12/15/ENEURO.0145-16.2016.abstract.

[116]

Laura Gwilliams, GA Lewis, and Alec Marantz. Functional characterisation of letter-specific responses in time, space and current polarity using magnetoencephalography. NeuroImage, 132:320–333, 2016. https://www.sciencedirect.com/science/article/pii/S105381191600166X.

[117]

Linmin Zhang. Composing conceptual and logical information: Semantic processing in left anterior temporal cortex. PhD thesis, New York University, 2016. https://search.proquest.com/openview/913f5f104900afba2a426f42998ae54e/1?pq-origsite=gscholar\&cbl=18750.

[118]

Christian Brodbeck, Laura Gwilliams, and Liina Pylkkänen. EEG can track the time course of successful reference resolution in small visual worlds. Frontiers in psychology, 6:1787, 2015. https://www.frontiersin.org/articles/10.3389/fpsyg.2015.01787.

[119]

Teon L Brooks and Daniela Cid de Garcia. Evidence for morphological composition in compound words using MEG. Frontiers in human neuroscience, 9:215, 2015. https://www.frontiersin.org/articles/10.3389/fnhum.2015.00215.