eelbrain.test.ANOVA
- eelbrain.test.ANOVA = <function ANOVA>
Univariate ANOVA.
- Parameters
- Variables
Notes
Mixed effects models require balanced models and full model specification so that E(MS) can be estimated according to Hopkins (1976).
Examples
Simple n-way between subjects ANOVA:
>>> ds = datasets.get_uv(nrm=True) >>> print(test.ANOVA('fltvar', 'A*B', data=ds)) SS df MS F p --------------------------------------------------- A 28.69 1 28.69 25.69*** < .001 B 0.04 1 0.04 0.03 .855 A x B 1.16 1 1.16 1.04 .310 Residuals 84.85 76 1.12 --------------------------------------------------- Total 114.74 79
For repeated measures designs, whether a factors is fixed or random is determined based on the
Factor.random
attribute, which is usually specified at creation:>>> ds['rm'].random True
Thus, with
rm
providing the measurement unit (subject for a within-subject design), theA*B
model can be fitted as repeated measures design:>>> print(test.ANOVA('fltvar', 'A*B*rm', data=ds)) SS df MS MS(denom) df(denom) F p ----------------------------------------------------------------------- A 28.69 1 28.69 1.21 19 23.67*** < .001 B 0.04 1 0.04 1.15 19 0.03 .859 A x B 1.16 1 1.16 1.01 19 1.15 .297 ----------------------------------------------------------------------- Total 114.74 79
Nested effects are specified with parentheses. For example, if each condition of
B
was run with separate subjects (in other words,B
is a between-subjects factor),subject
is nested inB
, which is specified assubject(B)
:>>> print(test.ANOVA('fltvar', 'A * B * nrm(B)', data=ds)) SS df MS MS(denom) df(denom) F p ----------------------------------------------------------------------- A 28.69 1 28.69 1.11 38 25.80*** < .001 B 0.04 1 0.04 1.12 38 0.03 .856 A x B 1.16 1 1.16 1.11 38 1.05 .313 ----------------------------------------------------------------------- Total 114.74 79
Numerical variables can be coerced to categorial factors in the model:
>>> ds = datasets.get_loftus_masson_1994() >>> print=(test.ANOVA('n_recalled', 'exposure.as_factor()*subject', data=ds)) SS df MS F p --------------------------------------------------- exposure 52.27 2 26.13 42.51*** < .001 --------------------------------------------------- Total 1005.87 29