eelbrain.datasets.get_mne_sample
- eelbrain.datasets.get_mne_sample(tmin=-0.1, tmax=0.4, baseline=(None, 0), sns=False, src=None, sub="modality=='A'", ori='free', snr=2, method='dSPM', rm=False, stc=False, hpf=0, proj=True)
Load events and epochs from the MNE sample data
- Parameters
tmin (float) – Relative time of the first sample of the epoch.
tmax (float) – Relative time of the last sample of the epoch.
baseline (Optional[Tuple[Optional[float], Optional[float]]]) – Period for baseline correction.
sns (Union[bool, Literal['eeg', 'mag', 'grad']]) – Add sensor space data as NDVar as
ds['meg']
(defaultFalse
). Set to'grad'
to load gradiometer data.src (Literal[False, 'ico', 'vol']) – Add source space data as NDVar as
ds['src']
(defaultFalse
).sub (str) – Expression for subset of events to load. For a very small dataset use e.g.
[0,1]
.ori (Literal['free', 'fixed', 'vector']) – Orientation of sources.
snr (float) – MNE inverse parameter.
method (str) – MNE inverse parameter.
rm (bool) – Pretend to be a repeated measures dataset (adds ‘subject’ variable).
stc (bool) – Add mne SourceEstimate for source space data as
ds['stc']
(defaultFalse
).hpf (float) – High pass filter cutoff.
proj (bool) – Add projectors.
- Returns
ds – Dataset with epochs from the MNE sample dataset in
ds['epochs']
.- Return type