eelbrain.pipeline.MneExperiment.load_evoked_stc
- MneExperiment.load_evoked_stc(subjects=None, baseline=True, src_baseline=False, cat=None, keep_evoked=False, morph=None, mask=False, data_raw=False, vardef=None, samplingrate=None, decim=None, ndvar=True, **state)
Load evoked source estimates.
- Parameters:
subjects (str | 1 | -1) – Subject(s) for which to load data. Can be a single subject name or a group name such as
'all'
.1
to use the current subject;-1
for the current group. Default is current subject (or group ifgroup
is specified).baseline (bool | Tuple[float | None, float | None]) – Apply baseline correction using this period in sensor space. True to use the epoch’s baseline specification. The default is True.
src_baseline (bool | Tuple[float | None, float | None]) – Apply baseline correction using this period in source space. True to use the epoch’s baseline specification. The default is to not apply baseline correction.
cat (Sequence[str | Tuple[str, ...]]) – Only load data for these cells (cells of model).
keep_evoked (bool) – Keep the sensor space data in the Dataset that is returned (default False).
morph (bool) – Morph the source estimates to the common brain (default
False
, except when loading multiple subjects andndvar=True
).mask (bool | str) – Discard data that is labelled
unknown
by the parcellation. Parcellation name (str
) to specify a parcellation,True
to use the parc/mask (parcellations) state parameter. Only applies whenndvar=True
, defaultFalse
.data_raw (bool) – Keep the
mne.io.Raw
instance inds.info['raw']
(default False).vardef (str) – Name of a test defining additional variables.
samplingrate (int) – Samplingrate in Hz for the analysis (default is specified in epoch definition).
decim (int) – Data decimation factor (alternative to
samplingrate
).ndvar (bool) – Add the source estimates as NDVar named “src” instead of a list of
mne.SourceEstimate
objects named “stc” (default True).... –
Applicable State Parameters:
raw: preprocessing pipeline
epoch: which events to use and time window
rej (trial rejection): which trials to use
model: how to group trials into conditions
equalize_evoked_count: control number of trials per cell
cov: covariance matrix for inverse solution
src: source space
inv: inverse solution